

1

How to Create a Multi Boot SD
card or SSD out of 2 existing
OSes using PINN
procount edited this page on 10 Jan, 2021 · 46 revisions

Blind Freddy edited this page to include instructions for using Raspberry Pi to make multi-boot disk with choice
of Twister OS or CrowPi2 OS for use with a CrowPi2 laptop. June11, 2021

My thanks to procount (and lurch) for all their wonderful work.

NOTE: Procedures offered here for using Pi will only work with 2 partition OSes. Raspbian based seem to work
fine, but others are untested. It has to do with BSD tar and GNU tar and their implementations;

How to Create a Multi-Boot SD card or SSD
out of 2 existing OSes using PINN -
specifically for CrowPi2, but for others with
suitable modifications

Introduction
These instructions explain how to create a multi-boot SD card or SSD for the Crowpi2 that will
enable you to select which OS will be used on boot. The 2 (or more) OSes are ones that you
have previously installed to 2 (or more) separate SD cards and customised to an extent that you
don't want to lose those customisations. They will also include a mod to /boot/config.txt on all
OSes, to prevent Crowpi2 from shutting down after 30 seconds. ie add line gpio=0=op,dl to
end of /boot/config.txt

These instructions can be used to multi-boot more than 2 OSes, or different OSes than the
example ones given here. Just adapt the instructions as necessary.

In any of the following instructions, any line beginning with a $ indicates a line that should be
typed in by the user (not including the $ symbol, which represents the command line prompt)

Pre-Requisites

 2 existing uSD cards containing 2 OSes (e.g. Twister and Crowpi2)
 1 blank uSD card or SSD large enough to hold both OSes as a multi-boot device. Final

objective
 1 USB memory stick (or uSD card with USB card reader) to hold install versions of

required OSes
 a USB uSD card reader

2

 a PC running a version of desktop Linux (Ubuntu assumed). It is possible to use a
Raspberry Pi running Raspbian, but due to it's lack of memory, it is advisable to omit the '-
9' option from any xz commands, or use gzip instead of xz. I used Pi 4 8GB with -9 option
and Crowpi2 took about 6 hours

Overall Process
The overall process that I will cover will have the following general outline. Each step will be
documented along the way.

 Backup the existing OSes to PINN required format
 Make the backups suitable for installation by PINN. ie download and modify support

files
 Copy the custom OSes to a new SD card to make new local repository.
 Make a PINN bootable uSD card or SSD
 Use PINN to install the OS backups to the multi-boot card or SSD

Step 1 - Backup existing OSes
The SD cards containing the existing customised OSes need to be backed up in a particluar way
in order for PINN to install them. PINN prefers a backup file per partition, which could be a
compressed image file, or a compressed tar file.

An image file is a bit-by-bit backup of the whole of a partition, including any unused space, so
it can be a lot bigger than is necessary. Compressing the image afterwards can remove a lot of
this unused space to make the file smaller, but it nevertheless requires an SD card at least as
big as the original partition size to restore the files to. To avoid this, a common practice is to
first resize the partition and its file system to be as small as possible before taking the image. In
this way, less of the unused space is recorded in the image file and it can be restored to a
smaller SD card. However, it also requires that after restoration, the file system should be
expanded to fill the remaining space of the partition, otherwise it will not be possible to add
much more data or install anymore programs to the partition. Because of these complications
of first reducing and then expanding the file systems, this method will not be considered here.

An alternative approach is to create an archive of the files on each partition as a tar file and
then compress it. Using this method, only the existing files will be backed up, and not any
empty space, so it should be smaller than a corresponding image file. On restoration, the tar
files can be decompressed to a preformatted partition of any size at least as large as the files
themselves. No file system expansion would be necessary because the partition would have
already been formatted to its full capacity.

This second method is documented here.

ASIDE: A word about OS partition labels and filenames

3

PINN uses several JSON files to describe each OS that it will install. Each OS has a
partitions.json file which contains information about how many partitions there are, what their
label should be, how to format them, and where the installation image for each partition can be
found.

Most OSes comprise 2 partitions, a small FAT32 partition called 'boot' that holds the startup,
firmware and kernel files and an EXT4 partition called 'root' that holds the root file system,
(although there are exceptions). All the partition labels on a drive must be unique, so when
PINN installs multiple OSes on the same device, it will make any duplicate labels unique by
appending a number where necessary. Nevertheless, it is still not easy to identify which
partitions belong to a particular OS when they are all called: 'boot', 'boot1', 'boot2',... 'root',
'root1', 'root2'... etc. So OSes converted for PINN often have their partition labels renamed to
link them to the OS name, e.g. 'bootcp' & 'rootcp' for Crowpi2.

When installing an OS, PINN looks in partitions.json for the label name of each partition and
searches for a corresponding archive file with the same basename. The extension can be any
one of the following: (.tar.lzo, .tar.gz, .tar.bz2, .tar.zip, .tar.xz or .tar) according to the
compression used. Raw image files (not discussed further in this tutorial) can have any one of the
following extensions: (.img.lzo, .img.gz, .img.bz2, .img.zip, .img.xz, .lzo, .gz, .bz2, .zip, .xz) .

This tutorial assumes the partition labels are 'boot' and 'root'. However, if the partitions.json file
for the OS you are converting indicates different label names from these, please substitute
those for 'boot' and 'root' accordingly in the following instructions.

We are creating bootcp, rootcp for Crowpi2 and boottwstr and roottwstr for Twister

Backup Twister

First we will backup the Twister OS.

We will start on our PC and fire up Linux or your trusty Pi. (Pi4 8GB preferred) We will be doing
a lot of this procedure by the command line, so if you have booted into a desktop environment,
launch your normal terminal program (Terminal, LXTerminal or similar). This should drop you
into your home directory (/home/<username> or just '~' for short)

1. Create a folder called os/twister in your home folder to store your backup in.
$ mkdir -p ~/os/twister

2. Insert your uSD card that has your customised Twister OS on it into the USB reader
and insert it into a free USB slot of the PC. You need to note what device Linux has
assigned it (e.g. /dev/sdb) and where it has been mounted
(e.g. /media/<username>/boot or /root etc).
Some Linux OSes may automount the partitions on this SD card, so in this case you can
type mount to identify the device and where it's partitions have been mounted and skip
the next step. For this tutorial, we will assume the SD card is referenced as /dev/sdb with
/dev/sdb1 mounted at /media/<username>/boot and /dev/sdb2 mounted

4

at /media/<username>/root. If yours is mounted at a different location, please replace
appropriately in the following steps.

3. If it has not been auto-mounted, you will need to manually mount the partitions on
the device.
$ dmesg
Look for the recent logs at the end of the dmesg output to identify the name of the
most recently added device. You then need to create a mountpoint for each partition on
the device. We will assume the device has been assigned /dev/sdb and has 2 partitions
(/dev/sdb1 and /dev/sdb2) named boot and root

$ sudo mkdir /media/<username>/boot
$ sudo mkdir /media/<username>/root
$ sudo mount /dev/sdb1 /media/<username>/boot
$ sudo mount /dev/sdb2 /media/<username>/root

4. Now we will take a copy of our SD card and store it in 2 archive files.

If using Linux desktop eg Ubuntu

$ cd /media/<username>/boot
$ sudo bsdtar --numeric-owner --format gnutar -cpvf ~/os/twister/boot.tar .
 (note the dot on the end)
$ cd /media/<username>/root
$ sudo find . -type s -exec rm {} \;
$ sudo bsdtar --numeric-owner --format gnutar --one-file-system -cpf ~/os/twister/root.tar .
 (note the dot on the end)

If using Raspberry Pi

$ cd /media/<username>/boot
$ sudo tar --numeric-owner -cpvf ~/os/twister/boot.tar . (note the dot on the end)
$ cd /media/<username>/root
$ sudo find . -type s -exec rm {} \;
$ sudo tar --numeric-owner --one-file-system -cpf ~/os/twister/root.tar .
 (note the dot on the end)

Then with either Linux or Pi

$ cd ~/os/twister
$ xz -9 -e boot.tar
$ xz -9 -e root.tar
note that this last process can take up to 6 hours on a Pi

Note the command sudo find . -type s -exec rm {} \; The purpose of this command is to
remove any socket files on the image which cannot be backed up by bsdtar and can cause
restoration problems.

You should now have 2 files in ~/os/twister called boot.tar.xz and root.tar.xz

5. We need to make a note of how much space the OS takes up. This information is used later
to modify .json file

$ sudo du -BK -s /media/<username>/boot | cut -d"K" -f1 >boot.size
$ sudo du -BK -s /media/<username>/root | cut -d"K" -f1 >root.size

5

rename boot and root files such as they have unique names for later

$mv boot.tar.xz boottwstr.tar.xz
$mv root.tar.xz roottwstr.tar.xz

6. Finally we will unmount the Twister OS SD card

$ umount /media/<username>/boot
$ umount /media/<username>/root

and then you may eject and remove the Twister OS SD card.

Backup Crowpi2

Now we will backup the other OS, Crowpi2, which is just a repeat of the operation to backup
our Twister OS.

1. Create a folder called os/crowpi2 in your home folder to store your backup in.
$ mkdir -p ~/os/crowpi2

2. Insert your uSD card that has your customised Crowpi2 OS on it into the USB reader
and insert it into a free USB slot of the PC. You need to note what device Linux has
assigned it (e.g. /dev/sdb) and where it has been mounted
(e.g. /media/<username>/boot or /root etc). Some Linux OSes may automount the
partitions on this SD card, so in this case you can type mount to identify the device and
where it's partitions have been mounted and skip the next step. For this tutorial, we will
assume the SD card is referenced as /dev/sdb with /dev/sdb1 mounted
at /media/<username>/boot and /dev/sdb2 mounted at /media/<username>/root. If yours is
mounted at a different location, please replace appropriately in the following steps.

3. If it has not been auto-mounted, you will need to manually mount the partitions on
the device.
$ dmesg
Look for the recent logs at the end of the dmesg output to identify the name of the
most recently added device. You then need to create a mountpoint for each partition on
the device. We will assume the device has been assigned /dev/sdb and has 2 partitions
(/dev/sdb1 and /dev/sdb2) named boot and root
(we will assume the /media/<username>/boot and/media/<username>/root folders still exist
from backing up Twister)

$ sudo mount /dev/sdb1 /media/<username>/boot
$ sudo mount /dev/sdb2 /media/<username>/root

4. Now we will take a copy of our SD card and store it in 2 archive files.

Again, for linux desktop system

$ cd /media/<username>/boot
$ sudo bsdtar --numeric-owner --format gnutar -cpvf ~/os/crowpi2/boot.tar .
$ cd /media/<username>/root
$ sudo find . -type s -exec rm {} \;

6

$ sudo bsdtar --numeric-owner --format gnutar --one-file-system -cpf ~/os/crowpi2/root.tar .

Or for Raspberry Pi system

$ cd /media/<username>/boot
$ sudo tar --numeric-owner -cpvf ~/os/crowpi2/boot.tar .
$ cd /media/<username>/root
$ sudo find . -type s -exec rm {} \;
$ sudo tar --numeric-owner --one-file-system -cpf ~/os/crowpi2/root.tar .

Now for either host system

$ cd ~/os/crowpi2
$ xz -9 -e boot.tar
$ xz -9 -e root.tar

You should now have 2 files in ~/os/crowpi2 called boot.tar.xz and root.tar.xz
Rename them to unique file names for Pinn installation later

mv boot.tar.xz bootcp.tar.xz
mv root.tar.xz rootcp.tar.xz

5. We need to make a note of how much space the OS takes up.
$ sudo du -BK -s /media/<username>/boot | cut -d"K" -f1 >boot.size
$ sudo du -BK -s /media/<username>/root | cut -d"K" -f1 >root.size

6. Finally we will unmount the Crowpi2 OS SD card

$ umount /media/<username>/boot
$ umount /media/<username>/root

and then you may eject and remove the Crowpi2 OS SD card.

Step 2 - Add OS Meta Data
Now we need to add some meta data files that describe these OSes to PINN so it knows how to
install them. We shall download some existing similar meta files for these OSes and then adapt
them as necessary.

First, Twister: Pinn already has an older version of Twister in their online repository. Get a copy
of them from PINN - Browse /os/twister at SourceForge.net

$ cd ~/os/twister
$ wget -N "https://sourceforge.net/projects/pinn/files/os/twister/os.json"
$ wget -N "https://sourceforge.net/projects/pinn/files/os/twister/twister.png"
$ wget -N "https://sourceforge.net/projects/pinn/files/os/twister/partitions.json"
$ wget -N "https://sourceforge.net/projects/pinn/files/os/twister/marketing.tar"
$ wget -N "https://sourceforge.net/projects/pinn/files/os/twister/partition_setup.sh"

In partitions.json, we need to edit root and boot file names to match the files we have created.
viz boottwstr and roottwstr.

We also need to modify partitions.json and edit the values for "partition_size_nominal" and
"uncompressed_tarball_size" for each of the boot and root partitions, so 4 values in total.

7

First in the boot partition, replace the value of "uncompressed_tarball_size" with the value
produced from:
$ expr `cat boot.size` / 1024 + 1
Whatever this value is, add 100 to it and use it to replace the value of "partition_size_nominal"

Next for the root partition, replace the value of "uncompressed_tarball_size" with the value
produced from:
$ expr `cat root.size` / 1024 + 1
Whatever this value is, add 500 to it and use it to replace the value of "partition_size_nominal"
(This value of 500 is the minimum additional free space required for the OS to execute.
Updating/Upgrading the OS using apt-get etc. may require additional space for it to complete
successfully)

Note the spaces and punctuation of backticks in the above expressions which are not quotes or
apostrophes.

Later versions of PINN support optional checksums for security. If you don't want to use these,
you should delete any sha256sum lines from os.json and partitions.json, making sure to respect
the JSON file syntax by possibly removing the trailing comma on the previous line. NOTE THIS
WELL

If you do want to add checksums, you can checksum partition_setup.sh by issuing sha256sum
partition_setup.sh and copying the resultant hash to the sha256sum line in os.json. Repeat this
for each of the tar.xz files adn copy the resultant hash file to the appropriate sha256sum in
partitions.json.

Then Crowpi2:

As Crowpi2 is based on Raspbian, we will get files suitable for modification based on Raspbian

$ cd ~/os/crowpi2

$wget -N "http://downloads.raspberrypi.org/raspbian/os.json"
$wget -N "http://downloads.raspberrypi.org/raspbian/Raspbian.png"
$wget -N "http://downloads.raspberrypi.org/raspbian/partitions.json"
$wget -N "http://downloads.raspberrypi.org/raspbian/marketing.tar"
$wget -N "http://downloads.raspberrypi.org/raspbian/partition_setup.sh"

Note that raspbian.png is not the correct image. It could be renamed crowpi2.png or could be
replaced with something more suitable. Any 40 x 40 image will do.

As before, we need to modify partitions.json and change names to bootcp and rootcp as
appropriate.

Then edit the values for "partition_size_nominal" and "uncompressed_tarball_size" for each of
the boot and root partitions, so 4 values in total.

First in the boot partition, replace the value of "uncompressed_tarball_size" with the value
produced from:

8

$ expr `cat boot.size` / 1024 + 1
Whatever this value is, add 100 to it and use it to replace the value of "partition_size_nominal"

Next for the root partition, replace the value of "uncompressed_tarball_size" with the value
produced from:
$ expr `cat root.size` / 1024 + 1
Whatever this value is, add 500 to it and use it to replace the value of "partition_size_nominal".
(This value of 500 is the minimum additional free space required for the OS to execute.
Updating/Upgrading the OS using apt-get etc. may require additional space for it to complete
successfully).

Note the spaces and punctuation of backticks in the above expressions which are not quotes or
apostrophes.

See the above section relating to checksums if you want to update or remove them.

If not using checksums, remove all references in partitions.json and os.json, remembering to
remove preceding comma if necessary.

Project Space

If space needs to be reserved on final disk, download all "ProjectSpace" files from sourceforge
and place in folder ~/os/projectspace.

Then, 3 folders under ~/os can be installed as required, and it will be possible to replace
projectspace with another OS at some later date without re-writing entire disk.

Step 3 - Copy the custom OSes to a new SD card.
Having prepared the custom OSes, they now need to be put on a USB stick, or an SD card that
can be inserted into a USB SD Card reader. If any of the files in the ~/os/<osname> are greater
than 4GB in size (the root.tar.xz file is likely to be the largest), then this memory device must be
formatted as ext4 and you must use PINN v2.4.2i which has been adapted to support ext4
formatted installation devices. If the installation files are all smaller than 4GB, then the memory
device may be formatted as FAT32 and any version of PINN can be used.

So, format your memory device to the appropriate above format and make sure it is large
enough to hold all of the files in the ~/os/ folder.

Now copy the ~/os/ folder and all sub folders to your memory device. Assuming your memory
device is mounted at /media/<username>/usb you can use the following command to copy them.
$ cp -r ~/os/ /media/<username>/usb

Step 4 - Make a PINN Bootable SD card or SSD

9

This step prepares the final SD card or SSD where the custom OSes will be installed for final
use.

So choose one that is large enough to store all the OSes, so at least as large as the original SD
cards added together.

Format your SD card or SSD as FAT32

For Windows users, we recommend formatting your SD card using the SD Association's
Formatting Tool, which can be downloaded
from https://www.sdcard.org/downloads/formatter_4/ You will need to set "FORMAT SIZE
ADJUSTMENT" option to "ON" in the "Options" menu to ensure that the entire SD card volume
is formatted - not just a single partition. For more detailed and beginner-friendly formatting
instructions, please refer to http://www.raspberrypi.org/quick-start-guide

The SD Association's Formatting Tool is also available for Mac users although the default OSX
Disk Utility is also capable of formatting the entire disk (select the SD card volume and choose
"Erase" with "MS-DOS" format).

For Linux users we recommend gparted (or the command line version parted). (Update: Norman
Dunbar has written up the following formatting instructions for Linux
users: http://qdosmsq.dunbar-it.co.uk/blog/2013/06/NOOBS-for-raspberry-pi/)

Blind Freddy note: For large disks, formatting FAT32 creates a small problem. SD formatter will
not format large disk as FAT32. It insists on Exfat. However, if SD card has previously been used
for Pinn, gparted does not format correctly. So, use SD formatter in windows (or Mac), then
gparted in linux to change partition to FAT32. You can also take this opportunity to make
second partition Exfat for freedom of use, if spare unused space is available.

Copy the PINN files to your SD card or SSD.

 Download pinn-lite.zip from sourceforge
 Extract the files from this zip file onto the SD card or SSD. (Windows built-in zip

features may have trouble with this file. If so, use another program such as 7zip.) Please
note that in some cases it may extract the files into a folder, if this is the case then please
copy across the files from inside the folder rather than the folder itself.

 Note that /boot/config.txt must have "gpio=0=op,dl" line added prior to next step,
otherwise CrowPi2 will shut down after 30 seconds

Step 5 - Install the custom backups
Now that all the SD cards are prepared we can move over to the Raspberry Pi and install the
OSes.

1. Insert the PINN bootable SD card from step 4 into the SD card slot of the RPi

10

2. Insert the memory device with your prepared custom OSes on it from step 3 into one
of the USB ports of the RPi

3. Since you will be installing the custom OSes from a local device, there is no need to
use the internet, and in fact PINN may choose a more recent version of the same OS
from the internet instead of your custom OS, so it is best to ensure the RPi is not
plugged into an ethernet cable and do not configure the wifi.

4. Boot your RPi. On first boot, PINN will reformat the SD card and when it is finished it
will display your two custom OSes.

5. Select both OSes and install them to your SD card or SSD. This may take a while.
6. When installation is complete, accept the dialog box and the RPi will reboot.
7. After rebooting, you will have a boot selection dialog where you can select which of your

custom OS you want to boot into.

End of file

